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1 Introduction

In this supplementary note we include the discussion of our simulation study, a detailed comparison
of differential abundance methods on oral microbiome data from the Human Metagenomics Project
and include a discussion on rarefaction and ambiguous read assignment to OTUs.

2 Zero-inflated Gaussian mixture-model

2.1 The model

Our zero-inflated Gaussian (ZIG) mixture model is motivated by the observed relationship between
depth of coverage and the number of OTUs detected (Supplementary Fig. 3). In this section, we
provide full details for our method (Supplementary Fig. 5).

Count data is modeled from two populations, each with n4 and np samples and with m features
(OTUs). The raw count for sample j and feature i is denoted by ¢;;. The class indicator function
is defined as k(j) = I{j € groupA}.

The zero-inflated model is defined for the continuity-corrected log, of the raw count data.

Yij = logy(cij + 1)

as a mixture of a point mass at zero I{oy(y) and a count distribution feount(y; 1, 0%) ~ N(p, 0?).
Given mixture parameters m;, we have that the density of the zero-inflated Gaussian distribution
for feature 4, in sample j with s; total counts is

FrigWis 55, By nis 07) = i (s;) - Loy (9ig) + (L= 7(55)) + Feount (Yig: 1is 07)
We specify the mean model as:

slA- +1
E(yi;lk(j)) =m; -0+ (1 —m)) - (bio + mi logs( jN ) +bi1k(j)> :

In this case, parameter b;; is an estimate of fold-change in mean normalized counts between the two
1

populations. The term including the logged normalization factor log, (?{,) captures OTU-specific
normalization factors through parameter 7;. This can capture feature specific biases, for instance
in PCR amplification efficiency([31, 32, 33]. The model can also be specified without OTU-specific
normalization, in which case the term including the normalization factor is treated as an offset in
the linear model. This is equivalent to defining a model on logged normalized count data without
including the normalization offset term in the linear model.

For large marker gene survey studies in clinical and epidemiological settings, it is essential
to include possible sources of confounding error when testing the association between the abun-
dance of taxonomic features and a clinical phenotype of interest (disease, for instance). Our linear
model methodology can easily incorporate these confounding covariates in a straightforward man-
ner. Other zero-inflated models have been developed mixing the Poisson and Binomial distributions.
These models have had applications to ecological count data[34].



Based on the observation that the number of zero-valued features of a sample depends on its
total number of counts, we model the mixture parameters m;(s;) as a binomial process:

log —— = By + 1 - log(s;)
s
The linear model of the binomial process above can also include covariates that capture variability
in the sampling process as appropriate. Note however, that the detection model does not depend
on class indicator function k(j).

We highlight an example of the effect of the ZIG model on differential abundance in one OTU
annotated as Granulicatella para-adiacens found in the Human Microbiome Project dataset (Sup-
plementary Fig. 6).

2.2 Expectation-Maximization Algorithm

Denote the full set of estimates as 6;; = {50, 51, bio, i, bi1 }. Maximum-likelihood estimates are ap-
proximated using the EM algorithm where we treat mixture membership A;; = 1 if y;; is generated
from the zero point mass as latent indicator variables. The log-likelihood in this extended model is
then

10355 yij» 85) = (1= Di) 108 feount (y; i, 07 ) 4+ Aijlogmi(s;) + (1 — Aj) log{1 — m;(s;)}.
E-Step: Estimates responsibilities z;; = Pr(A;; = 1) given current estimates éij as
) 7 Loy (vis)

Zii = - = =
’ 75 Ioy (Wig) + (1 = 75) feount (Yiz; 0i5)

Notice 2;; =0V y;; > 0.

M-Step: Estimates parameters 6;; given current estimates Z;;:

To compute b, we use weighted least squares, with weights 1 — 2;;. Note that only samples with
yi; = 0 potentially have weights < 1. Estimates of standard error are also obtained using 1 — Z;;

as weights. The mixture parameter is estimated as 7; = Zil %;;/G, from which we estimate f3,
using least squares on the logit model as:

s
log —Z— = By + Py log (s5)-

-7

From the estimated fold-change (by;) and its standard error, we construct a moderated ¢-statistic
by Empirical Bayes [25] and use a parametric ¢-distribution to obtain p-values for the test by; = 0.
Notice that this only incorporates the count component of the zero-inflated mixture model. We
interpret this test as the expected difference in abundance between groups conditioned on feature
detection.

The moderated t-statistic is defined as t; = W’W, where 57 is obtained by pooling all
i i ij
2 o2
features’ variances as described in [25], 52 = % where s? and d; are respectively the observed

feature variance and degrees of freedom and dy and s3 are estimated using the method of moments
incorporating all feature variances and degrees of freedom. We found that by using a log-Normal
distribution, the moderated t-test was appropriate. As in the previous Metastats version, we use
the g-value method [35] to correct for multiple testing.



We chose to use a log-normal distribution in the count component of the mixture instead of
a generalized linear model, e.g. negative binomial [18,19], for both computational and statistical
reasons. On the computational side, we would need to estimate a weighted generalized linear model
using an iterative method at each maximization step. That is too computationally intense and
numerically unstable. On the statistical side, we find that the log-normal distribution is appropriate
since the type of marker gene survey study we are targeting tend to have moderate to large sample
sizes (Supplementary Fig. 2). This is consistent with recent observations in the literature [36].



3 Comparison of differential abundance detection methods

We compared Metastats[13], Lefse[14], DESeq[18] and edgeR[19] along with metagenomeSeq using
oral microbiota data from the Human Microbiome Project[24] to identify differentially abundant
OTUs in tongue and subgingival plaque samples. Metastats and edgeR declared the largest number
of OTUs to be significant (533 and 524, respectively), while metagenomeSeq (360) and, especially,
DESeq (20) and Lefse (8) declared fewer significant OTUs (Supplementary Table 2). We illustrate
the range in depth of coverage that metagenomeSeq takes into account (Supplementary Fig. 8).

Overall, metagenomeSeq and DESeq showed high agreement in fold-change estimates (Sup-
plementary Fig. 9A). Specifically, metagenomeSeq and DESeq fold-change estimates were very
similar on features exhibiting low sparsity, but DESeq fails to declare as significant the majority of
dense features declared significant by metagenomeSeq (only 20 of 244). We found that the mean-
dispersion trend estimated by DESeq for this dataset was uncharacteristic of those estimated from
RNAseq data (Supplementary Fig. 9B) and DESeq consistently overestimated dispersion for dense
features resulting in a large number of failed discoveries (e.g. the feature shown in Supplementary
Fig. 9C is not declared as differentially abundant by DESeq). Features with high sparsity drive
the poor dispersion estimate in DESeq and are also features where fold-change estimates between
metagenomeSeq and DESeq disagreed (e.g. Supplementary Fig. 9D). By controlling for low se-
quencing depth, metagenomeSeq is able to detect these population differences appropriately.

The edgeR method consistently estimated larger fold-changes in comparison with both metagenome-
Seq (Supplementary Fig. 10A) and DESeq (Supplementary Fig. 10B). The edgeR method includes
total sample counts as a term in a generalized linear model, while our model includes the CSS
normalization term in the log-normal linear model of the count distribution. Artifacts arising from
normalization using total counts lead to many false differential abundance predictions made by
edgeR (e.g. Supplementary Fig. 10C), which are avoided by using our proposed normalization
method. The dispersion trend estimate in edgeR is also uncharacteristic for this dataset (Supple-
mentary Fig. 10D) and the deviation is again driven by feature sparsity.

Metastats was more consistent with edgeR (Supplementary Fig. 11A) than metagenomeSeq
(Supplementary Fig. 11B) or DESeq (Supplementary Fig. 11C) due to its use of total normal-
ization. Even though we are testing for overall differential abundance between oral microbiota,
regardless of sequencing site, Metastats consistently called features as significant where differences
are specific to sequencing site (e.g. samples sequenced in JCVI as shown in Supplementary Fig.
12D). Large survey studies may obtain samples from a variety of locations, over heterogeneous
populations. Analysis methods used in these studies require the ability to interpret differential
abundance taking into account the heterogeneity of these populations. Both RNAseq methods
and metagenomeSeq use linear models that can include possible confounding sources of variabil-
ity, in this case sequencing site or gender, to aid interpretation in differential abundance testing.
metagenomeSeq and both RNAseq methods are able to detect site-specific differential abundance
between microbiota using an interaction model. Metastats was not designed to carry out this kind
of test. Similarily, Lefse uses an ad-hoc heuristic approach to account for subpopulations in large
marker studies that is overly conservative and prone to low sensitivity.



4 Ambiguous read assignment to OTUs

Ambiguous read assignment is an important consideration in testing differential abundance in count
data, and in particular RNAseq[37, 38, 39, 40]. There are two sources for ambiguous read assign-
ment in RNAseq data that may apply to marker gene survey data. In isoform ambiguity, where a
sequence read could be generated from sequencing one of multiple possible isoforms for a gene. In
this case gene-level abundance measurements are convolutions of isoform-level abundances which
may bias differential abundance inferences in the presence of differential abundance at the isoform
level. In marker gene survey data, reads are clustered based on sequence similarity and the resulting
clusters define features over which differential abundance testing is performed. The type of con-
volution occurring in RNAseq data would occur when an OTU defined by clustering contains two
distinct functional OTUs. We have chosen a sequence similarity threshold (99%) that was previ-
ously shown to be more stringent than similarity at species-level[20] thus reducing the possibility of
convolution to occur. We therefore believe that this type of ambiguity does not arise frequently in
this setting. On the other hand, less stringent sequence similarity thresholds, which would increase
the frequency of convolution, still exhibit high sparsity as previously reported[41, 42]. We believe
sparsity does indeed drive the improvement in results we see as methods using non-zero inflated
negative binomial models, including Cuffdiff2; are not suitable.

However, there is a second source of ambiguity in RNAseq data that can occur in marker gene
survey data. In RNASeq analysis there is ambiguity for some reads with multiple potential ’op-
timal’ mappings along the genome, so called 'multi-mapped’ reads. This analogously occurs in
marker gene survey data in assigning reads to OTU clusters and subsequently the count observed
for given OTUs. In this case, reads may be assigned to more than one cluster if it is within
the given similarity threshold for more than one cluster representative sequence. The default op-
tion in our pipeline, based on DNAClust, does not guarantee that a sequence can be uniquely
placed. Reads are assigned to a particular cluster by choosing the best alignment and largest OTU
representative center for a given set of clusters and can have more than one possible placement.
However, there an option in DNAClust, 'non-overlapping’, that results in less ambiguously assigned
reads by restricting reads that are within the radius of two or more clusters to not get assigned.
This is similar to a commonly used approach in RNAseq analysis of discarding multi-mapped reads.

To test the effect of a potentially ambiguous read mapping to a cluster we re-ran DNAClust with
the 'non-overlapping’ option on the full HMP dataset to compare rarefaction and sparsity results
observed earlier. The rarefaction effect (association between depth of coverage and the number of
detected features) and sparsity is essentially unchanged (Supplementary Fig. 14). The least sparse
sample after filtering OTUs (less than 5 positive samples or reads present) and samples (<1,000
total counts or > 35,000) in the 'non-overlapping’ run is 97.48% non-positive while we observed
97.46% with default DNAclust options.

We subset the data to the same subgingival and tongue samples and trimmed OTUs (less than
5 positive samples) as previously performed for the subgingival and tongue analysis. We observed
23,275 OTUs, a total of 410 fewer OTUs. We reran DESeq and the zero-inflated Gaussian mixture
model on this less ambiguous dataset and compared fold-change estimates between DESeq and the
zero-Inflated Gaussian mixture (Supplementary Fig. 10A). We observed the same phenomena that
Z1G is adjusting fold-changes on sparse OTUs as previously described. Also, we observed that the



over dispersion estimates are similar to our previous run (Supplementary Fig. 15).

5 Discussion

Rarefaction is a common phenomenon in molecular surveys of bacterial communities[43], where the
number of taxonomic features detected in a sample depends on the amount of sequencing performed.
This large variation in the number of taxonomic features detected in each sample, contributes to
the inherent sparsity of metagenomic data where most features are only found in a few samples, as
previously reported[20,21,22].

Recent publications have relied on machine learning techniques, such as random forests, to
identify microbiota signatures correlated with phenotypic observations[41, 42]. Our work targets
a complementary task the feature-by-feature assessment of differential abundance based on an
appropriately defined linear model that accounts for specific microbiota features and confounding
factors. The methods developed here, in particular the ZIG mixture model, can be incorporated
into machine-learning based predictive models that seek to identify multiple features for specific
phenotypes.

Other types of analyses adversely affected by high sparsity and sampling bias include clustering
and co-occurrence network discovery. While the normalization approach presented here can help
control biases in analyses based on simple correlation measures, methods developed to specifically
discover significant correlations between sparse features in marker gene survey data are better suited
for the task[20,21].

References

[31] Gonzalez, J. M., Portillo, M. C., Belda-Ferre, P. & Mira, A. Amplification by per artificially
reduces the proportion of the rare biosphere in microbial communities. PLoS ONE 7, ¢29973
(2012).

[32] Wu, J.-Y. et al. Effects of polymerase, template dilution and cycle number on pcr based 16 s
rrna diversity analysis using the deep sequencing method. BMC Microbiology 10, 255 (2010).

[33] Von Wintzingerode, F., Gbel, U. B. & Stackebrandt, E. Determination of microbial diversity
in environmental samples: pitfalls of pcr-based rrna analysis. FEMS Microbiology Reviews 21,
213-229 (1997).

[34] Hall, D. B. Zero-inflated poisson and binomial regression with random effects: a case study.
Biometrics 56, 1030-1039 (2000). URL http://www.ncbi.nlm.nih.gov/pubmed/11129458.

[35] Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proceedings of
the National Academy of Sciences 100, 9440-9445 (2003).

[36] Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of
rna-seq data. BMC' Bioinformatics 14, 91 (2013).


http://www.ncbi.nlm.nih.gov/pubmed/11129458

[37]

[38]

Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. Rna-seq gene expression
estimation with read mapping uncertainty. Bioinformatics 26, 493-500 (2010).

Wang, X., Wu, Z. & Zhang, X. Isoform abundance inference provides a more accurate estima-
tion of gene expression levels in rna-seq. Journal of Bioinformatics and Computational Biology
8 Suppl 1, 177-192 (2010).

Salzman, J., Jiang, H. & Wong, W. H. Statistical modeling of rna-seq data. Statistical Science
26, 62-83 (2011).

Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with rna-seq.
Nature Biotechnology 4653 (2012).

Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C. & Knight, R. Human-associated
microbial signatures: examining their predictive value. Cell host & microbe 10, 292296
(2011).

Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486,
222-227 (2012).

Hughes, J. B. & Hellmann, J. J. The application of rarefaction techniques to molecu-
lar inventories of microbial diversity. Methods in Enzymology 397, 292-308 (2005). URL
http://www.ncbi.nlm.nih.gov/pubmed/16260298.


http://www.ncbi.nlm.nih.gov/pubmed/16260298

Sub-oral community (HMP study)

Sub-oral community (HMP study)

[¢]
[Te)
i
o
e O«
2 L ST
o o
€ S
g 87 o ™
8- IX=l
< o
g o| 2
[0} S o~
el ~
5 o| 2°
h i — - E— o| B
> o o _
T T T ©
0.59 0.62 0.66
o o_| Y ks L "
o
T T 1 T T T T T T T T T T 11 T T T T T
0 0.11 0.26 0.42 0.58 0.74 0.89 1 0.25 0.5 0.75 1
Percentile Index
Lung study Lung study
©
o ° o]
8-
o _|
o o
g g
o o
{5} <
28 8571
[8V)
§ 8
E @
o ™ _|
g 84 5
8 [0}
> (0] =
§ oo
5 2 °
5 ©
E 8 ||
g L
o U_AuuLLI_LILNMUJLLouLLhIJMLLJ
o

T T T T T 1
042 0.58
Percentile

0.74

Supplementary Figure 1.
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Data-driven adaptive method for selecting normalization

scale quantile. Left, we plot d; (see Online Methods) for our oral sub-community and lung micro-
biome datasets. In the oral sub-community (HMP) dataset we observe sample count distributions
differ greatly from the reference at the 65th percentile where relative difference of the median de-
viation is greater than 10%. For the lung microbiome dataset, this occurs at the 41st percentile.
Right, relative difference of the median deviation of sorted sample counts from reference for the
oral sub-community and lung microbiome datasets. We observe that the raw sample counts follow
similar distributions up to the 65th and 41st percentile respectively. The reference is calculated as

the row means of raw sorted counts.
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Supplementary Figure 2. Effect of normalization on clustering analysis. We plot the
first two principal coordinates in a multi-dimensional scaling analysis components for count data
normalized by (A) logged upper quantile, (B) quantile normalization, (C) logged total-sum scaling,
and (D) the raw counts. Orange points represent samples on the LF /PP diet and green the Western
diet. (E) Class posterior probability log-ratio for Western diet obtained from linear discriminant
analysis (LDA). Each box in the plot corresponds to the distribution of leave-one-out posterior
probability of assignment to the “Western” cluster for samples of each type across normalization
methods. Clustering analysis is improved significantly by CSS normalization and Logged upper
quantile scaling.
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Supplementary Figure 3. The number of OTUs detected in a sample depends on
sequencing depth and phenotypic characteristics. We plot the number of detected OTUs
in a sample as a function of sequencing depth for the Human Microbiome Project (A) and the
lung microbiota study (B). There is a strong dependency between sequencing depth and number
of detected OTUs. Neither dataset shows that the number of OTUs stabilizes for samples with
high depth, indicating that in both cases sequencing depth may not be sufficient for comprehensive
profiling of the microbial community. We found that a large proportion of variability in the number
of OTUs detected is explained by sequencing depth. We found that including clinical covariates,
e.g. body site sampled, we obtained greatly improved fits with higher adjusted R2. The same
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Supplementary Figure 4. Effect of sequencing depth on the number of genes detected in
RNAseq. We plot the number of genes detected in a RNAseq sample as a function of sequencing
depth. In the lower corner of each plot is the adjusted R? value representing how much of the
variation in each sample’s detected genes is described by the depth of coverage. The proportion
of genes detected in any particular sample is much higher in RNAseq datasets (15-85%) compared
to marker gene survey data samples (1-3%). Depths of coverage are also much larger in RNAseq.
Datasets obtained from Recount[23] at: http://bowtie-bio.sourceforge.net/recount/
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Supplementary Figure 6. Illustration of the effect of zero-inflated Gaussian mixture
model on differential abundance. (A) Kernel density estimates of log-counts for an Granuli-
catella para-adiacens OTU in samples from the Human Microbiome Project. We see that subgin-
gival plaque samples have a large number of zero counts that result in large differential abundance
estimate when a model without zero-inflation is used. (B) Weighted kernel density estimates for
the same samples. Weights are obtained from the posterior probabilities for zero counts due to

under-sampling of the microbial community. After accounting for zero-inflation, the differential

abundance estimate is moderated for this feature. This plot also suggests that the log-normal

distributional assumption used in this paper is supported.
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Supplementary Figure 9. Comparison of metagenomeSeq differential abundance de-
tection to detection by DESeq. (A) Fold-change estimates for metagenomeSeq and DESeq.
We see that metagenomeSeq and DESeq agree in these estimates for dense features (green), while
for sparse features (orange) metagenomeSeq adjusts fold-changes weighting zeros according to sam-
ple depth of coverage. (B) Estimate of dispersion as a function of mean feature counts by DESeq.
Sparse features, indicated in orange, display high dispersion relative to dense features (green). This
makes DESeq overestimate dispersion in general resulting in a large number of missed discover-
ies. (C) A feature where dispersion overestimates by DESeq lead to a false negative call. Each
panel plots the CSS normalized counts with samples ordered by sequencing center (WUGC, JCVI,
BCM), sex (female, male), and depth of coverage. The top panel shows subgingival plaque samples,
the bottom panel shows tongue samples. The bottom strip in each panel indicates the posterior
probability estimates for zeros due to community sub-sampling (PMSS). Depth of coverage for this
dataset is given in Supplementary Fig. 8. (D) A sparse feature where weighting of zero counts by
metagenomeSeq results in a differential abundance call missed by DESeq. Panels follow convention
in sub-figure (C).
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Supplementary Figure 10. Comparison of edgeR differential abundance detection to
detection in metagenomeSeq and DESeq. (A) Fold-change estimates for metagenomeSeq
and edgeR. We see that fold-changes are not consistent across features with edgeR significantly
overestimating many fold changes. (B) Fold-change estimates for DESeq and edgeR. Again, edgeR
overestimates many fold-changes. (C) Feature not considered significant according to metagenome-
Seq, but edgeR normalization using total counts results in a significant call. Panels follow convention
in Supplementary Fig. 9C. Counts plotted are CSS normalized counts. (D) Dispersion as estimated
by edgeR. Dispersion does not follow typical RNAseq experiments. Features declared significant by
metagenomeSeq, but not edgeR (orange) have high variability estimates in edgeR and tend to be
sparse features (triangles). metagenomeSeq and edgeR agree on abundant dense features (magenta
circles). Features declared significant by edgeR but not metagenomeSeq (purple) have moderate
abundance driven by few high-count features resulting from normalization artifacts.
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Supplementary Figure 11. Comparison of Metastats differential abundance detection
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to detection in metagenomeSeq, DESeq and edgeR. (A) Fold-change estimates for Metastats
and edgeR showing high consistency between the two methods. (B) Fold-change estimates for

metagenomeSeq and Metastats where Metastats consistently over-estimates fold-changes especially

for sparse features (orange). (C) Fold-change estimates for DESeq and Metastats, where again
Metastats overestimates fold-changes for sparse features (orange). (D) Sequencing site fold-change

estimates from metagenomeSeq for features detected as differentially abundant by the original

Metastats, but not by metagenomeSeq. Many differential abundance discoveries in Metastats are
solely due to site specific effects.
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Supplementary Figure 12. Novel species detected as differentially abundant in tongue
and subgingival microbiomes. Plot of CSS normalized counts for three OTUs. Samples are
ordered by sequencing center (WUGC, JCVI, BCM), sex (female, male), and depth of coverage.
Underneath each panel are probabilities of missing sequences due to subsampling (PMSS). The
top graphs represent subgingival plaque samples, the bottom represent tongue samples. Depth of
coverage of the samples is given in Supplementary Fig. 8 for comparison.
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Supplementary Figure 13. Depth of coverage follows a log-Normal distribution and
cumulative sum scaling normalization controls dispersion. Top, quantile-quantile plot of
sample sequencing depth and a log-Normal distribution. We see that raw sample depth of coverage
closely follows a log-Normal distribution. Bottom, coefficient of variation for total-sum normalized
counts versus CSS normalized counts. We observe that dispersion is always greater in total-sum
normalized counts.
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Supplementary Figure 14. Effect of unambiguously placing reads in OTU centers on
rarefaction. Plot of the same samples for the 99% ’perfect clusters’ (A) and 99% ’exact clusters’
(B) run through DNAclust after trimming OTUs to be positive in at least five samples and removing
outlying samples. Notice that rarefaction and sparsity is not affected by the DNAclust option.

22



A ZIG M vs. DESeq M B & DESeq dispersion fit
Y7 o Notsig. & CoL
A ZIG sig. T LI
+ DESeq sig. R P
o o X Both sig. Mt e .,
D 8 o8e
C
5] &
< g °
3 ~ 2
e o
o 2
o) A oy
@ wa 1
Qo 2
‘~~. dense samples < dense samples
Y4 % sparse samples 9 sparse samples
(0]
I I I I I - I I l I I
-4 -2 0 2 4 1 2 5 10 20 50 100

ZIG fold—change Mean of normalized counts

Supplementary Figure 15. Effect of unambiguously placing reads in OTU centers
on differential abundance. Plots are as Supplementary Fig. 9A-B but were plotted using
OTUs created running the 'perfect clustering’ option in DNAclust. (A) Fold-change estimates for
metagenomeSeq and DESeq. We see that metagenomeSeq and DESeq agree in these estimates
for dense features (green), while for sparse features (orange) metagenomeSeq adjusts fold-changes
weighting zeros according to sample depth of coverage. (B) Estimate of dispersion as a function
of mean feature counts by DESeq. Sparse features, indicated in orange, display high dispersion
relative to dense features (green). This makes DESeq overestimate dispersion in general resulting
in a large number of missed discoveries.
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Zero-Inflated Gaussian Model (ZIG)

TRUTH Called DA Not Called DA Total| Sensitivity Specificity
Differentially Abundant (DA) 2,376 124 2,500 0.950 0.962
Not DA 1,802 45,698 47,500
Total 4,178 45,822
Lefse
Called DA Not Called DA Total | Sensitivity Specificity
DA 24 2,476 2,500 0.010 1.000
Not DA 0 47,500 47,500
Total 24 49,976

Supplementary Table 1: Comparison of metagenomeSeq with Lefse - subpopulation simulation. We simulated data from two populations where each population
consisted of two subpopulations representing a case-control study where cases and controls were collected from multiple sites. Using linear modeling, ZIG was more
sensitive than Lefse, while retaining specificity in settings where groups tested include confounding subpopulations.



More
abundant in
plaque

More
abundant in
tongue

Not
differentially
abundant
Total number
of
differentially
abundant
features

Z1G DESeq A DESeqB DESeqC edgeR A edgeR B edgeR C Metastats A Metastats B Metastats C Lefse A Lefse B Lefse C
186 12 0 0 145 0 57 168 0 125 6 0 0
174 0 8 ) 1 172 149 0 169 71 0 2 0
607 172 165 607 40 2 401 18 5 411 180 172 607
360 20 524 533 8

Supplementary Table 2: Comparison of DESeq, edgeR, original metastats, and Lefse with ZIG. DESeq finds only 20 and interesting features

with our criteria, FDR<0.05 and fold-change of at least 1. edgeR and the original Metastats call many more, 524 and 533 features respectively, as

differentially abundant. Many of these are biased by a small number of non-zero, large valued counts. Lefse only declared 8 features significant due
to heuristic false positive controls.

A: Intersection of features that ZIG finds are differentially abundant in the subgingival plaque
B: Intersection of features that ZIG finds are differentially abundant in the tongue
C: Intersection of those that ZIG does not declare as differentially abundant




